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ANTIPLANE STRAIN OF A BODY

UNDERGOING LARGE-ROTATIONS

UDC 539.3V. D. Bondar’

Antiplane strain of a cylindrical elastic body undergoing large rotations under surface load in the ab-
sence of body loads is studied. The form of the elastic potential corresponding to this strain is found.
The stresses, the strains, and the displacement are expressed in terms of pressure and two indepen-
dent strains and the pressure is expressed in terms of the linear strain invariant. For the strains
and displacement, nonlinear boundary-value problems are formulated and their ellipticity conditions
are given. The linear problem for the displacement is obtained by transformation of variables. An
example of determining the displacement is considered.

Key words: displacement, Almansi strains, rotations, Cauchy stresses, elastic potential, nonlin-
earity, boundary-value problem.

In a number of cases, rotations of elements of a deformed body can exceed substantially elongations and
shears. This situation occurs, in particular, for deformation of flexible bodies and also massive bodies near the
external and internal boundaries. For these cases, the strain–displacement relations which occupy intermediate
position between the formulas of linear elasticity and the general nonlinear relations were obtained in [1]. Using
these relations, we study the antiplane strain of an isotropic cylindrical body in the context of the nonlinear theory
of elasticity in the actual variables x1, x2, and x3 (x1 = x and x2 = y are the transverse coordinates and x3 = z is
the longitudinal coordinate) assuming that body forces are absent and surface load is given.

This model is determined by equilibrium equations, Murnaghan’s law, compatibility equation, relation of
the strain invariants in terms of its components, and strain–displacement relations [2]. We write these relations in
actual variables.

Expressing the displacement gradients ∂kul in terms of the symmetric component ekl and asymmetric com-
ponent ωkl:

∂kul = ekl + ωkl (∂k = ∂/∂xk),

2ekl = ∂kul + ∂luk, 2ωkl = ∂kul − ∂luk

(1)

[ekl are components of the linear strain tensor (elongations and shears) and ωkl are the rotation-tensor components],
we write Novozhilov’s formulas for the Almansi strains Ekl as

2Ekl = 2ekl − ωkmωlm (2)

[the right side (2) contains terms of the same order of magnitude]. In Eqs. (1) and (2) and below the subscripts
take the values 1, 2, and 3; summation is performed over repeated indices.

For the antiplane strain of a cylindrical body (displacement is directed along the body and does not depend
on the longitudinal coordinate [3, 4]), we obtain

u1 = 0, u2 = 0, u3 = w(x, y).
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In accordance with (1), we have

e11 = e22 = e33 = e12 = 0, e31 = ∂xw/2, e32 = ∂yw/2,

ω11 = ω22 = ω33 = ω12 = 0, ω31 = −∂xw/2, ω32 = ∂yw/2

and, hence, formulas (2) yield

E11 = −(∂xw)2/8, E22 = −(∂yw)2/8, E33 = ((∂xw)2 + (∂yw)2)/8,

E12 = −∂xw ∂yw/8, E31 = ∂xw/2, E32 = ∂yw/2, Ekl = Ekl(x, y).
(3)

Eliminating the displacement from (3), we obtain the finite and differential strain-compatibility conditions

E11 = −E2
31/2, E22 = −E2

32/2, E33 = −(E2
31 + E2

32)/2, E12 = −E31E32/2,

∂E32

∂x
− ∂E31

∂y
= 0.

(4)

The finite conditions allow one to express the strains in terms of the two independent components E31 and E32,
whereas the differential condition establishes a differential relation between them.

According to the equalities 2E31 = ∂xw and 2E32 = ∂yw in (3), the independent strains determine the
displacement by quadrature

w = 2

(x,y)∫

(x0,y0)

(E31 dx + E32 dy) + w0 (w0 = const), (5)

in which, according to (4), the integral is path independent and the constant is the displacement specified at the
boundary point.

By virtue of (4), the basic strain invariants Ek as functions of the strain-tensor components or functions of
two independent strains are determined by the formulas

E1 = E = Ekk = −(E2
31 + E2

32),

2E2 = EkkEll − EklElk = −2(E2
31 + E2

32)(1 − (E2
31 + E2

32)/4), E3 = detEkl = 0.

These relations imply the properties of the invariants

4E2 = E(4 + E), E3 = 0, 1 − 2E1 + 4E2 − 8E3 = (1 + E)2, Ek = Ek(x, y), (6)

i.e., the invariants are constant along the body and expressed in terms of the linear invariant.
For an isotropic body, the elastic potential U and the material density ρ are functions of the basic strain

invariants:

U = U(E1, E2, E3), ρ = ρ0(1 − 2E1 + 4E2 − 8E3)1/2

(ρ0 is the initial density). For the antiplane strain, by virtue of (6), these quantities depend only on the linear
invariant:

U = U(E), ρ = ρ0(1 + E). (7)

It follows that the body is compressible for the Novozhilov nonlinear model, whereas it exhibits incompressible
behavior for this strain in the general geometrically nonlinear case [5].

Using Murnaghan’s law

Pkl =
ρ

ρ0
(δkn − 2Ekn)

∂U

∂Eln

(δkn is the Kronecker symbol), which relates the Cauchy stress Pkl to the Almansi strain Ekl and taking into
account (7) and the relations

E = Elnδnl,
∂E

∂Eln
= δnl,

∂U

∂Eln
=

∂U

∂E

∂E

∂Eln
= U ′(E)δnl
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we infer that the stresses are quasilinear functions of strains dependent on the transverse coordinates:

Pkl(x, y) = −q(E)(δkl − 2Ekl). (8)

Here q is the pressure determined as

q(x, y) = −(1 + E)U ′(E). (9)

Using (4), one expresses stresses (8) in terms of pressure and independent strains:

P11 = −q(1 − 2E11) = −q(1 + E2
31), P12 = 2qE12 = −qE31E32,

P22 = −q(1 − 2E22) = −q(1 + E2
32), P32 = 2qE32, (10)

P33 = −q(1 − 2E33) = −q(1 + E2
31 + E2

32), P31 = 2qE31.

Thus, the problem of determining stresses (10), strains (4), and displacement (5) reduces to finding the pressure and
two independent strains. These quantities should satisfy three equations of equilibrium and strain-compatibility
equation. Below, we show that this system is compatible: the first two equations determine the pressure and the
last two equations the independent strains.

Taking into account formulas (10), we write the equilibrium equations in the absence of forces (∂kPkl = 0)
and the strain-compatibility equation (4) as

(1 + E2
31)

∂q

∂x
+ E31E32

∂q

∂y
+ q

[
E31

(∂E31

∂x
+

∂E32

∂y

)
+ E31

∂E31

∂x
+ E32

∂E31

∂y

]
= 0,

(1 + E2
32)

∂q

∂y
+ E32E31

∂q

∂x
+ q

[
E32

(∂E31

∂x
+

∂E32

∂y

)
+ E32

∂E32

∂y
+ E31

∂E32

∂x

]
= 0,

2
[
E31

∂q

∂x
+ E32

∂q

∂y
+ q

(∂E31

∂x
+

∂E32

∂y

)]
= 0,

∂E32

∂x
− ∂E31

∂y
= 0.

Combining the first and second equalities with the fourth equality and simplifying the relations, we obtain
∂q

∂x
+ E31

[
E31

∂q

∂x
+ E32

∂q

∂y
+ q

(∂E31

∂x
+

∂E32

∂y

)]
+

q

2
∂

∂x
(E2

31 + E2
32) = 0; (11)

∂q

∂y
+ E32

[
E31

∂q

∂x
+ E32

∂q

∂y
+ q

(∂E31

∂x
+

∂E32

∂y

)]
+

q

2
∂

∂y
(E2

31 + E2
32) = 0; (12)

E31
∂q

∂x
+ E32

∂q

∂y
+ q

(∂E31

∂x
+

∂E32

∂y

)
= 0; (13)

∂E32

∂x
− ∂E31

∂y
= 0. (14)

By virtue of (13) and relation E = −(E2
31 + E2

32), Eqs. (11) and (12) are simplified and become equations
for determining the quantity ln q − E/2:

∂

∂x

(
ln q − 1

2
E

)
= 0,

∂

∂y

(
ln q − 1

2
E

)
= 0.

Integrating these equations, we obtain this quantity (and, hence, the pressure) up to a constant:

ln q − E/2 = lnh, q = h exp (E/2), h = const. (15)

Relations (9) and (15) yield the equation for the elastic potential, from which the potential is determined
by quadrature:

(1 + E)U ′(E) = −h exp (E/2), U = −h

∫
(1 + E)−1 exp (E/2) dE + g, g = const. (16)

For small strains (|E| � 1), the linear approximation for the derivative of the potential and the quadratic
approximation for the potential are given by

462



U ′ = −h(1 − E/2), U = h(E2/4 − E) + g. (17)

Thus, for the model considered, the antiplane strain occurs only for the elastic potential (16) [or (17) in the case of
small strains].

The constant h in the expression for the elastic potential can be determined in terms of the longitudinal
component P3 of the end-load resultant. Indeed, according to (10) and (16), for the cylinder end S with the normal
vector (0, 0, 1) we obtain

P3 =
∫

S

p3 dS =
∫

S

P33 dS = −hJ, J =
∫

S

exp (E/2)(1 − E) dS, h = −P3

J
.

For |E| � 1, the linear approximations yields

exp (E/2)(1 − E) = 1 − E

2
, J =

S(2 − E∗)
2

, E∗ =
1
S

∫

S

E dS, h = − 2P3

S(2 − E∗)
,

where E∗ is the average value of the invariant in a cross section of the body.
In system (13), (14), we write Eq. (13) as

∂E31

∂x
+

∂E32

∂y
+ E31

∂ ln q

∂x
+ E32

∂ ln q

∂y
= 0

and taking into account (15) (using the expression E = −E2
31 − E2

32 for the invariant), we eliminate the pressure
from it. The resulting relation along with Eq. (14) form a system of equations for determining the independent
strains, free from the elastic potential:

(1 − E2
31)

∂E31

∂x
+ (1 − E2

32)
∂E32

∂y
− E31E32

(∂E32

∂x
+

∂E31

∂y

)
= 0,

∂E32

∂x
− ∂E31

∂y
= 0. (18)

For these equations, we obtain the characteristic determinant D [6], which is a quadratic form of the quantities v1

and v2:

D = (1 − E2
31)v

2
1 − 2E31E32v1v2 + (1 − E2

32)v
2
2 .

For the Sylvester conditions [7]

1 − E2
31 > 0, (1 − E2

31)(1 − E2
32) − E2

31E
2
32 > 0,

which can be reduced to the condition

E2
31 + E2

32 < 1, (19)

the quadratic form is positive definite (the determinant D is positive). Consequently, the characteristic equation
D = 0 has no real roots. In this case, system (18) is of elliptic type and the boundary-value problem with specified
strains is well-posed for this system.

If the lateral surface of the cylinder is subjected to forces pk constant along the cylinder, the relations
pk = Pklnl, where (nl) = (n1, n2, 0) is the outward normal vector, are the nonlinear system of equations for the
independent strains, which hold at the contour L of the section S:

p1 = P1lnl = −qn1 + qE31(E31n1 + E32n2), p2 = P2lnl = −qn2 + qE32(E31n1 + E32n2),

p3 = P3lnl = 2q(E31n1 + E32n2) on L.

To simplify these equations, we write the forces in the natural axes of the contour: normal (nk), tangent (tk), and
binormal (bk). Using the representations of the unit vectors of the natural axes and introducing the quantities En

and Et related to the independent strains and linear strain invariant by the formulas

(nk) = (n1, n2, 0), (tk) = (t1, t2, 0) = (−n2, n1, 0), (bk) = (0, 0, 1),

En = E3knk = E31n1 + E32n2, Et = E3ktk = −E31n2 + E32n1,

E = −E2
31 − E2

32 = −E2
n − E2

t ,
(20)

463



E31 = Enn1 − Etn2, E32 = Enn2 + Etn1 on L,

we write the natural components of the forces pn, pt, and pb as

pn = pknk = −q(1 + E2
n); (21)

pt = pktk = −qEnEt, pb = pkbk = 2qEn on L, (22)

where, according to (15) and (20), the pressure at the boundary is given by

q = h exp (−(E2
n + E2

t )/2) on L. (23)

In this case, the quantities Et and En are determined by relations (22):

Et = −2pt/pb, En exp (−E2
n/2) = pb exp (2p2

t /p2
b)/(2h) on L, (24)

and equality (21) [after substitution of q and En from (23) and (24) into it] imposes a restriction on the load. For
small strains, the transcendental equation in (24) is simplified and the quantities Et and En are written in a linear
approximation as

Et = −2pt/pb, En = pb/(2h) on L. (25)

Thus, the boundary values of the independent strains are expressed by formulas (20), in which the quanti-
ties Et and En are related to the forces by (24) [by formulas (25) for small strains]. Equations (18) and conditions (20)
are the boundary-value problem for the independent strains.

Based on the problem for the strains, one can obtain the problem for the displacement. By virtue of the
equalities in (3), which express the independent strains in terms of the displacement:

2E31 = wx, 2E32 = wy, (26)

the second equation in system (18) is satisfied identically and the first equation is reduced to the second-order
nonlinear equation for the displacement

(4 − w2
x)wxx − 2wxwywxy + (4 − w2

y)wyy = 0. (27)

For this equation, the ellipticity condition (19) is given by w2
x+w2

y < 4 and the boundary displacement is determined
by formula (5) as

w =

u∫

u0

(
E31(u)x′(u) + E32(u)y′(u)

)
du + w0 on L

(u is a parameter).
The nonlinear equation for the displacement (27) can be reduced to a linear equation by transformation of

variables. Setting s = 2E31 and t = 2E32, we write (26) as the Legendre transformation

s = wx, t = wy, W = xs + yt − w. (28)

Here w and W are the generating functions of the direct and inverse transformations, respectively. This transforma-
tion allows one to pass from the physical-plane coordinates (x and y) to the coordinates of the plane of the doubled
independent strains (s, t). In the process, the first derivatives of the function w in Eq. (27) are transformed into
the variables s and t according to (28) and the second variables can be expressed in terms of the second derivatives
of the function W . To this end, we differentiate the third equality in (28) with respect to s and t to obtain the
inverse-transformation formulas

Ws = x + sxs + tys − ws = x + wxxs + wyys − ws = x,

Wt = y + sxt + tyt − wt = y + wxxt + wyyt − wt = y.
(29)

Differentiating these relations with respect to x and y, we obtain two systems of linear equations:

Wsssx + Wsttx = 1, Wstsx + Wtttx = 0

for sx and tx;

Wsssy + Wstty = 0, Wstsy + Wttty = 1
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for sy and ty. Provided the Jacobian G does not vanish,

G = WssWtt − W 2
st �= 0,

the above equations yield the desired formulas for the second-order derivatives of the displacement

wxx = sx = Wtt/G, wxy = sy = tx = −Wst/G, wyy = ty = Wss/G. (30)

Substituting (28) and (30) into Eq. (27), we obtain the linear differential equation for the function W (s, t)
with the ellipticity condition s2 + t2 < 4:

(4 − t2)Wss + 2stWst + (4 − s2)Wtt = 0. (31)

In polar coordinates R and V of the strain plane

R =
√

s2 + t2, tan V = t/s (s = R cosV, t = R sin V ),

Eq. (31) is simplified. Simple calculations show that the terms on the left side (31) are given by

4(Wss + Wtt) = 4
(
WRR +

1
R

WR +
1

R2
WV V

)
,

−(t2Wss − 2stWst + s2Wtt) = −RWR − WV V ,

and, hence, Eq. (31) becomes

4R2WRR + R(4 − R2)WR + (4 − R2)WV V = 0, (32)

for which ellipticity condition is given by R < 2.
In the physical plane, the contour L is assumed to be determined by the equations x = x(u) and y = y(u).

On the contour, the strains E31 = E31(u) and E32 = E32(u) and, hence, the quantities s = s(u) and t = t(u)
(determining the contour in the strain plane) and the displacement [see (5)] are specified

w(u) =

u∫

u0

(
s(u)x′(u) + t(u)y′(u)

)
du + w0.

Then, by virtue of (28), the function W (u) is known on L which determines the boundary condition for Eq. (32):

W = W (u) = x(u)s(u) + y(u)t(u) − w(u) on L. (33)

Equation (32) and condition (33) constitute the boundary-value problem for W in the variables R and V .
Let the solution W (R, V ) of the problem be found. Then, the inverse-transformation formulas (28) and (29)

written in the variables R and V

x = WR cosV − 1
R

WV sinV, y = WR sin V +
1
R

WV cosV, w = RWR − W, (34)

determine the displacement in the physical plane in a parametric form.
One can obtain, in an explicit form, the displacement as a function of the form w(x, y). By virtue of

relations (34), the Jacobian relating the variables x and y to the variables R and V can be written as

∂ (x, y)
∂ (R, V )

= xRyV − xV yR =
1
R

WRR(RWR + WV V ) − 1
R

(
WRV − 1

R
WV

)2

.

The differential equation (32) implies

RWR + WV V = −4R2(4 − R2)−1WRR.

Therefore, the Jacobian becomes

∂ (x, y)
∂ (R, V )

= − 1
R

[ 4R2

4 − R2
W 2

RR +
(
WRV − 1

R
WV

)2]
(R �= 0),

which with allowance for the ellipticity condition 4 − R2 > 0 implies that ∂ (x, y)/∂ (R, V ) < 0. Nonzero Jacobian
ensures invertibility of the transformation determined by the first and second equalities in (34), i.e., the existence
of the functions R = R(x, y) and V = V (x, y). Using these functions, one represents the displacement explicitly
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w(R, V ) = w(x, y). Thus, to determine the displacement in the physical plane, it suffices to solve problems (32)
and (33).

We consider the nonlinear equation (27) for the displacement in the physical plane. This equation admits,
in particular, self-similar solutions of the form [8]

w = xZ(f), f = y/x, (35)

where the function Z(f) is determined from the equation

Z ′′
[
(1 + f2)Z ′ − fZ − 2

√
1 + f2

][
(1 + f2)Z ′ − fZ + 2

√
1 + f2

]
= 0.

This equation yields the equations

Z ′′ = 0, (1 + f2)Z ′ − fZ − 2
√

1 + f2 = 0, (1 + f2)Z ′ − fZ + 2
√

1 + f2 = 0,

whose solutions are, respectively, given by

Z = A + Bf, Z = 2
√

1 + f2 (A + arctan f), Z = 2
√

1 + f2 (A − arctan f),

where A = const and B = const.
According to (35), these solutions yield the displacements

w = Ax + By = r(A cos v + B sin v), (36)

w = 2
√

x2 + y2 (A + arctan (y/x)) = 2r(A + v), w = 2
√

x2 + y2 (A − arctan (y/x)) = 2r(A − v)

(r and v are polar coordinates of the physical plane), which can be used in solving problems.
In particular, for a circular cylinder whose section S is bounded by a circle L of radius R, the last solution

in (36) determines the displacement field with the boundary displacement wL:

w = 2r(w∗/(2R) − v), wL = w∗ − 2Rv, A = w∗/(2R). (37)

Here the constant A is determined by the displacement w∗ at the point of a circle with the coordinates r = R and
v = 0.

In the solution (37) dependent on polar coordinates r and v, the displacement increases with the polar radius
and decreases as the polar angle increases. In this case, we have w(0) = 0 and w(R, v) = wL. Upon passing a
loop around the coordinate origin, the polar angle varies from 0 to 2π; therefore, the displacement is a multi-valued
function of the coordinates. The multi-valuedness can be interpreted as follows: the cylinder is first cut by a
half-plane passing through its axis, then one part is shifted with respect to the other along the cylinder axis and
glued again. These displacements are typical of a screw dislocation whose axis coincides with the z axis. Thus,
the solution (37) describes the screw dislocation in the cylinder. In contrast to (37), the displacement in the screw
dislocation in a circular cylinder, studied in the linear theory of elasticity [4], does not depend on the polar radius.
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